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the angle from the center of the projection to 001. This can be messured directly by 
means of the gnomonic tangent scale. Then construct the triangles CST and XYZ. The 
angles p and T,  and v and v are measured. This can most easily be done by means of the 
divided circle and the fact that an angle a t  the circumference of a circle is measured by one 
half its subtended arc. The following relations will then yield the axial ratio. 

b sin p .  a sin v - - - - - = - 
c s inn '  c sinv' 

For the proof of these relations see the explanation of the more general case under the 
triclinic system, Art. 227, p. 152. 

Determination of Axial Elements of Pyroxene from Gnomonic Projection 

214. To determine, by plotting, the indices of a face on a monoclinic crystal, having 
given the position of its pole upon the gnomonic projection. There is no essential differ- 
ence between the orthorhombic and monoclinic systems in the determination of indices 
from the gnomonic projection. The intercepts of perpendiculars from the poles of the 
faces upon the front to back and left to right zonal lines running through the pole of c(001) 
give direct1 the Grst two numbers of the indices. The gnomonic projection of the epi- 
dote crystJalready given (Fig. 348) will serve to illustrate this problem. 

VI. TRICLINIC SYSTEM 

(Amr th i c  System) 

216. Crystallographic Axes. - The triclinic system includes all the forms 
which are referred to three unequal axes. with all their intersections oblique. 

When orientated in the customary manner one axis has a vertical posi- 
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tion and is called the c axis (cf. Fig. 357), a second axis lies in the front-to- 

367 -back plane, sloping down toward the observer, and is 
called the a axis. The'remaining axis is designated as 

[k. a the b axis. Usually the a and b axes are so chosen that 

gi -a"%, 
the a axis is the shorter and, like in the orthorhombic by system, case the is b sometimes axis is longer called and the is known brachy-axis. as the In macro- that 
axis. But this is not invariably true; thus with rho- 
donite the ratio of a : b = 1-073 : 1. The angle 

Triclinic Axes between the axes b and c is called a, that between a 
and c is 0, and that between a and b is 7 (Fig. 357). 

It is to be noted that there is no necessary relation between the values of 
a, p, and 7, any one may be greater or less than 90"; this is determined by 
the choice of the fundamental forms. 

1.. NORMAL CLASS (31). AXINITE TYPE 

(Holohedral or Pinacoidal Class) 

216. Symmetry. - The normal class of the triclinic system is character- 
ized by a center of symmetry, the point of intersection of the three axes, 
but there is no plane and no axis of symmetry. This symmetry is shown in 
the accompanying stereographic projection (Fig. 358). 

Symmetry of Normal Class Triclinic Pinacoide 

217. Forms. - Each form of the class includes two faces, parallel to 
one another and symmetrical with reference to the center of symmetry. 
This is true as well of the form with the general symbol (hkl) as of one oP the 
special forms, as, for example, the a-pinacold (100). 
-- Hence, as shown in the following table, f ie  four p-~smatjc faces 110, i10, 
110, IT0 include two forms, namely, 110, 110, and 110, 110. The same is 
true of the domes. Further, any eight i o r ~ p o n d i n g  pyramidal faces, as, 
for example, 111, i l l ,  i i 1 ,  l i l ,  111, - i l l ,  111, lii belong to four distinct 
f o m ,  namely, 111, TIT; i l l ,  111; 111, 111; l i l ,  i iT,  and similarly in 
general. 
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The various types of forms are given in the following table: 
' Indioas 

Macropinacoid or a-pinacoid. . . . . . . . . . . . . . . . . . . . . . .  (100) 
. . . . . . . . . . . . . . . . . . . . . .  Brachypinacoid or b-pinacoid. 

Base or c-pinacoid.. 
(010) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (001) 
Prisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Macrodomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Brach ydomes 

Pyramids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

In the above table it is assumed that the axial rati0.k such that a < b. If the oppa- 
site were true the names brachy- and macro- would be mterclanged. 

218. The explanations given under the two preceding systems make it 
unnecessary to discuss in detail the various forms individually, except as 
illustrated in the case of crystals belonging to certain typical triclinic species. 

It may be mentioned, however, that Fig. 359 shows the diametral prism, 
which is bounded by three sets of unlike faces, the pinacoids a, b, and c. 
This is the analogue of the cube of the isometric system, but here the like 
faces, edges, and solid angles include only a given face, edge, and angle, and 
that opposite to it. 

219. Illustrations. - A typical triclinic crystal is shown in-Fig. 360 of 
axinite. Here ~(100) is the macropinacoid; m(ll0)- and M(110) the two 
unit prisms; ~(201) a macrodome, and x(111) and r(ll1) two unit pyramids. 
The axial ratio is as follows: 

Figs. 361, 362 show two crystals of rhodonite, a species which is allied to 
pyroxene, and which approximates to it in angle and habit. Here the faces 

Axinite Rhodonite 

are : Pinacoids a(100), b(010), ~(001) ; prisms m(l lo), M(li'0) ; pyramids 
q(221), k(221), n(221), r(ii1). 

Further illustrations are given by Fig. 363 of albite and Fig. 364 of anor- 
thite. The symbols of the faces, besides the pinacoids and the unit prism, 
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are as follows: Fig. 363, x(T01); Fig. 364, prisms f(130), ~ (130);  domes 
t(207), y(ZO1), e(021), r(061), n(OZ1); pyramids m(l l l ) ,  a ( l i l ) ,  o ( i i l ) ,  

363 366 

Albite 

Anorthite Axinite 
388 

Stereographic Projection of an Axinite Crystal 

p(Z1l). In Fig. 364 of ~OI-thite the similarity of the crystal to one of ortho- 
clase is evident on slight examination (cf. Figs. 340, 341), and careful study 
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with the measurement of angles shows that the correspondence is very cloae. 
Hence in this case the choice of the fundamental planes is readily made. 

Fig. 365 represents a crystal of axinite; Figs. 366 and 367 its stereo- 
graphic and gnomonic projections. 

367 

Gnomonic Projection of an Axinite Crystal 

2. ASYMMETRIC CLASS (32). CALCIUM THIOSULPHATE TYPE 
(Hemihedral Class) 

220. Besides the normal class of the triclinic system there is another 
possible class, possessing symmetry neither 
with respect to a plane, axis nor center; in it 888 

a given form has one face only. This class finds _-- ---?--.-_ 
examples among a number of artificial salts. ,.** I *. 

I *.. 

One of these is calcium thiosulphate /#' I 

(CaSzO3.6HS0); as yet no mineral, species is ! , 
known to be included here. This is the most / _.-- -----I? x .-.id---- general of all the thirty-two types of forms ! _._-+- I 

classified according to their symmetry and &(-------* 
comes first, therefore, if the classes are arranged ,,, in order according to the degree of symmetry *. '. 
characterizing them. This class is one of those -. i .. : -.A' 

1; 
whose crystals may show circular polarization. ------k7- This is true of eleven of the classes which have Symmetry of Asymmetric class 
been described in the preceding pages. 
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221. Choice of Axes. - I t  is obvious, from what has been said as to the symmetry of 
this system, that any three faces of a triclinic crystal may be chosen as the pinacoids, or 
the faces which fix the position of the axial planes and the directions of the axes; moreover, 
there is a like liberty in the choice of the unit prisms, domes or pyramids which further fix 
the lengths of the axes. 

When the crystal in hand is allied in form or compositiori to other species, whether of 
the same or different systems, this fact simplifies the problem and makes the choice of the 
fundamental forms easy. This is well illustrat+, as already noted, by the triclinic felds ars 
(e.g., albite and anorthite, Figs. 363, 364) whch are near in angle to the altied monoclnic 
species orthoclase. Rhodonite (Figs. 361, 362), the triclinic member of the pyroxene 
group, is another good example. 

In other cases, where no such relationship exists, and where varied habit makes different 
orientations plausible, there is but little to guide the choice. This is illustrated in the case 
of axinite (FIE. 360), whvre at  least ten distinct positions have been assumed bv different , - ..  
authors. 

222. Axial and Angular Elements. - The a&l elements of a triclinic crystal are: 
(1) the axial ra.tio, which expresses the lengths of the axes a and c in terms of the third 
axis, b; and (2) the angles between the axes a, 0, -y (Fig. 357). There are here five quanti- 
ties to be determined which obviously require the measurement of five independent angles 
between the faces. 

The angular e h e n t s  are usually taken as the angles between the pinacoids and, in 
addition those between each pinacold and the unit face lying in the zone of the other pina- 
coids; that is, 

ah, 100 A 010,. ac, 100 A 001, bc, 010 A 001; 
also am 100 A 110, 001 A 101, 001 A 011; 
or, instead, any one or all of these, 

aM, 100 A l io ,  ool A io l ,  001 A oi l .  
Of these six angles taken, one is determined when the others are known. 

223. The mathematical relations existing between the axial a n g l ~  and axial ratio, on the 
one hand, and the angles between the faces on the other, a d m t  of being drawn out with 
great completeness, but they are necessarily complex and in general have little practical 
value. In fact most of the problems likely to arise can be solved by means of the triangles 
of the spherical projection, together with the cotangent formula connecting four planes in 
the same zone (Art. 49, p. 49); this will often be laborious and may require some ingenuity, 
but in general involves no serious difficulty. In connection with the use of the cotangent 
formula, it is to be noted that in certain commonly occurring cases its form is much sim li 
fied; some of these have already been explained under the monoclinic system (Art, ah): 
The formulaa 'ven there are of course equally ap licable here. 

1%. The f%t roblem may be to find the ?xiayF1ements from m-ured angles. Since 
these elements incyude five unknown quantitlea, vlr., the three anal  angles a, p, 7 and 
the length of the axes a and c in terms of b, five measured angles are required, as already 
stated. 

fig. 369 represents the crystallographic axes of the triclinic mineral rhodonite. The 
positive ends of the three axes are joined by lines forming three triangles the angles of 
which are very important. In the triangle, for instance, which has the b and c axes for 

two of its sides since the length 
369 of the b axis is taken as 1.0, i t  

1s only necessary to know 
the ande a and either p or K 
In order to determine the length 
of the c axis. In the trian e 
that has the a and b axes 8' or 
two of its sides it  is necessary 
to know the value of 7 and 
either c or T in order to deter- 

100 
mine the length of the axis. 
And lastly in the triangle 
formed between the a and c 
axes, if the length of either of 
these axes is known, the length 

of the other can be determined from the angle P and either p or v. I t  is assumed that a 
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crystal of rhodonite showin the forms a(100), b(010), ~(001) and p( l l l ) ,  see Fig. 
370, has been measured and t%e poles of the faces plotted in the stormgraphic projoetion, 
Fig. 37!. The angles between the 
great circles which connect these 

37 1 

poles are the same as those shown 700 

In the triangles built upon the 
cry~tauographic axes Fig. 369. With 
the angles between the different crys- 
tal faces known by measurement, it 
is easy, by the formulas of spherical 
trigonometry, to calculate the value 
of these other angles and from them 
obtain the axial ratio. 

That the angles shown on thestere- 
o aphic projection, Fig: 371, are 010 
igntical mth  those in Flg. 369 may 

0 

be proved as follows. Let Fig. 372 
represent a vertical section cut 
through the spherical projection of 
rhodonite in such a wa as to 
include the b and c cr sta&gra hic 
axes. The triangle, wgch has tgese 
axes as two s~des and the three 
angles a, r and p, lies therefore in 
the plane of the figure. The nor- 
mals to a l l  faces parallel to the 
c axis, i.e. the prism zone, would lie in a plane a t  right,angles to that axis.   his ~ k n e  

would intersect the sphere of the spher- 
372 ical projection in a great circle which ie 

represented on the stereova hic pro- 
jection, Fig. 371, by the *c!ed circle. 
On Fig. 372 this pea t  c~rcle would 
appear in orthogaphlc projection as the 
line C-C' 1 ' g a t  right an es to the c f' axm. In  tg same way al faces lying 
parallel to the b axis i.e. the zone (100)- 
j101)-(001), would have their normals 
In a lane which would be foreshortened 
to tge line B-B' in Fig. 372. Since 

c the lines C-C' and B-B' are at  right 
anglee res ectively to the c and b axes 
the angle getween them must equal the 
axial angle, a. This same angle will 
appear therefore on the stereogaphic 
projection, Fig. 371, between the great 
circles of the two zones, the faces of 
which are parallel respectively to the c 
and b axes. Further the normals to all 
faces which intersect the b and c axes a t  
their unit lengths would lie in a plane a t  
right angles to the line k, Fig. 372. 

This plane would appear in orthographic projection as the line P-P'. On the stereographic 
projection, Fig. 371, this would be represented 
as the o n a l  circle passing throu h (!00), ( I l l ) ,  373 
(Oll), (100). The angle between %-B and P-P' 
will by construction equal r and that between C-C' 
and P-P' w11l equal p.  These same angles will appear 
therefore in the stereographic rojection between the -b 
correspondin zone circles. & the same way the 
identity of t%e angles 7, U, r, 0, r and v in Figs. 369 
and 371 can be proved. 

With the necessary number of these angles 'ven 
the formulas required for the cdculation o r t h e  
axial lengths are gven below. The angles 7',  u', v', 

A 

r', r' and P' are the corresponding angles to 7, U, etc.. 
in the adjacent quadrants, see F I ~ .  373. -0 
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c sin r sin r' c - -  - - = - 
-sin u' - b' sin p -sin p' a '  sin p sin p' b '  

If the angles given are between the three pinacoids and the pyramid hkl (not the unit form) 
the relations are similar. That is, if for the face hkl the corresponding angles be represented 
by TO, yo, etc., where TO, uo are the angles between the zone circles 100, 001'and 100, 010 
respect~vely and the zone cucle 001, hkO, these relations may be expressed in the general 
form 

sin TO - sin T ~ '  = a = k . 9 
sin uo sin uo' b' 

sin -- vo - sin vo' c h c -- =-= .  
sin pa sin pa' 1 1 ' a' 

h" 
sin r o  - sin TO' - c = . c 
sin pa sin po' 4 b 1 b 

k 

Thus for the face 321 the formulas become 
sin TO a 2 a sin vo &, sin r o  3. - = - ,  -- 
sin uo gb 3 b sin pa - a s1n po b 

It is also to be noted that 
a = 180' ' A, @ = 180" - B, -y = 180" - C, 

where A, B, C are the angles in the pinacoidal spherical triangle 100'010'001 a t  these 
poles respectively. That is, 

A = r + p  = r o + p o  = (180'- a ) ;  
B = v + p = vo + pa = (180'- 8) ;  
C = T + u = TO + 00 = (180" - -y). 

Also 
180" - A = r' + p '  = r o t  + pa' = a. 

Hence, having given, by measurement or calculation, the angles between the faces 
a b ( l 0  A 010), ac(100 A 001) and b~(010 A 001), which are the sides of this triangle, the 
angles A, B, C are calculated and then sbpplements are the a ~ a l  angles a, 8, 7 respectively. 

Still another serres o? equations are those below, whlch glve the relations of the angles 
V, p, etc., to  the axes and axial angles. B means of them, with the sine formulas gwen 

above, the angular elements (and other ang&) can be calculated from the axial elements. 

t a n r =  c sin (3 tan v = 
c + a c o s 8 '  a + c c o s p '  

b sin a c sin a 
tanp  = tan r = 

c + bcos a '  b f c c o s a '  
a sin 7 b sin y 

tan T = tan u = 
b f a c o s y '  a + b c o s y '  

These equations apply when p + v, etc., is less than 90"; if their sum is greater than 
No the si in the denominator is negative. 

1101. %e following equations are also often useful. . 
2 sin p sin p' - 2 sin r sin r' 

tan a = - 
sin ( p  - p') sin ( r  - r') ' 
2 sin sin p' - 2 sin v sin v' 

tan p = - s i n ( p - p ' )  s i n ( v - v ' ) .  
2 sin T sin T'  - 2 sin u sin a' 

tan -y = -  sin(^-7') s i n ( u - 0 ' ) .  
Also, a + x + p = B + p + v = ~ + ~ + u = 1 8 0 ~ .  

, m e  calculation, from the angular elements or from the assumed fundamental measured 
angles, either (1) qf the a g u l a r  position of any face whose symbol is given, or (2) of the 
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symbol of an unknown face for which measured angles are a t  hand, requires no further 
explanation. The cotangent formula is all that 1s needed In a slngle zone, and the solution 
of spherical triangles on the projection (with the use of the sine formulas) will suffice in 
addition in all ordinary cases. 

226. To determine, by plotting, the axial elements of a triclinic stal having given 
the stereogapfic projje~tion of its forms. In order to solve this p r o x m  ;t is necessary 
to have given the position of the poles of 
the unit forms (100). (OlO), (OOl), (111) or 374 
to be able to lochte them by means of 
their zonal relations. Through these poles 
the various zonal circles are drawn. as 
shown in the case of rhod onite, Fig. 371. 
The angles a, p, 7 ,  U, p, etc., are then given 
upon the projection. These angles can be 
measured as described in Art. 41, p. 39. 
Taking next a certain line as represent!ng 
the unit length of the b axis and knowlng 
the angles a, u and p the triangle that 
includes the b and c axes, see Fig. 369, can 
be drawn to scale and the unit length of 
the c axis determined. In a similar way 
the len h of the a axis can be found. 

226. $0 determine,.by p!otting, the indices 
of a face upon a trich~uc crystal, having 
given the position of its pole in the stereo- 
graphic projection and the axial elements 
of the mineral. To illustrate this problem 
a possible pyramid face on rhodonite will be used. Its pole is located in the stereograp 
hic pro'ection a t  z, Fig. 374. The position of the pol= of the faces a(1M)) and b(010) 
must ajso be known. The directions of the intersections of the planes of the a-c and 

b-c axes w ~ t h  the plane of the 
376 rojection can then be drawn. 

&hee links will represent the 
horizontal projections of the a 
and b crystal lop hic axes. 
A radial line is then Srawn from 
the center of the projection, 0, 
through z. Another l i n e ,  
A-P-B, is drawn perpendicular 
to this line at  any convenient 
distance from the center, 0.  
The line A-P-B mill represent 
the direction of intersection of 
the face z with the horizontal 
plane of the projection. The 
intercept that the face wlll 
make upon the vertical axis can 
be found by the construction of 
a right triangle with 0-P as its 
base, a line representing the c 
axis as its vertical side and the 

1.11 angle between 0-2 as the angle 
I U ~ E  between the base and the hy- 
llpon pothenuse, see Fig. 375. Under 

the mumed conditions the face 
will intersect the c axis a t  a dis- 
tance of, 1'93, the radius of the 
circle in the fi re being 
1.0. The face wilklalso ms 

through the points' A and B on the horizontal pro'ections of the a and b a=. 
With the known anglea f l  and o it is p o ~ i b l e  to construct d e  a and b axes with t h e l  pmper 
angular relations to the c axis. The Intercepts of the face upon these two axes will be 
given by the extension of the lines from the point 1'93 on the c axis to the points A and B. 
In this way the intercepts of the face upon the three axes were obtained m l ' l la ,  lS55b, 
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1'93c. By dividing these numbers by 1'55 we et the i~~tercepts expressed in terms of the 
length of the b axis, considering that aa 1.0. ~ % e  intercepts then become 0.71a, lb, 1 .24~.  
When t h e e  are compared with the axial ratio of rhodonite, a : b : c = 1.114 : 1 : 0.986, 
the parameters of the face are found to be +a, lb, 2c. The indices of x are therefore 321. 

237. To determine, by plotting, the axial elements of a triclinic crystal having given the 
gnomonic projection of its forms. To ilIustrate this problem it is assumed that the posi- 
tions of the poles of the faces, (1001, (0101, (0011, (1011, (011) and (111) on rhodonite are 
known, see Fig. 376. If this figure is compared with the stereographic projection of the 
same forms given in Fig. 371, it will be seen that the angle between the zones (100)-(101)- 
(001) and (100)-(111)-(011) is equal to T ,  that between the zones (100)-(111)-(011) and 
(100)-(110)-(010) is equal to P, between (010)-(011)-(001) and (010)-(111)-(101) is equal 
to v and between (010)-(111)-(101) and (010)-(110)-(100) is equal to r .  The method 
by which the angles between these various zones may be measured was explained in Art. 
42, p. 43, and is illustrated by the construction of Fig. 376. From these angles triangles 
can be readily constructed to give the lengths of the a and c axes in terms of the b axis, 
with its length taken as equal to 1'0. 

lf18. To deiambe, by pottrPg, the indices of the forms of a trlclinic crystal, having 
given the podtton Of other pole8 ths gnomonic projection. The method for the solu- 
tion of t b i i p r o b l ~  ~~ t E  alraady daaribed undel the previous syateps. The 
difference Lea m the fact that the 11nes of reference upon whch are plotted the lntercepta 
of the lines drawn to them from the pol= of the faces make oblique anglea with each other. 
These reference k ~ e s  are taken as the zond lines (001)-(101) and (001)-(011) and the 
inwoepta from which the indicee are determined are measured from the pole of (001). A 
study of the gnomonic projection of axinite, Fig. 367, will illustrate this problem. 

MEASUREMENT OF THE ANGLES OF CRYSTALS 
239, Contact-Gwiorneters. - The interfacial angles of crystals are 

measured by means of instruments which are called goniometers. 




