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the angle from the center of the projection to 001. This can be measured directly by
means of the gnomonic tangent scale. Then construct the triangles CST and XYZ. The
angles p and =, and v and » are measured. This can most easily be done by means of the
divided circle and the fact that an angle at the circumference of a circle is measured by one
half its subtended arc. The following relations will then yield the axial ratio. -

_ For the proof of these relations see the explanation of the more general case under the
triclinic system, Art. 227, p. 152.

Determination of Axial Elements of Pyroxene from Gnomonic Projection

214. To determine, by plotting, the indices of a face on a monoclinic crystal, having
given the position of its pole upon the gnomonic projection. There is no essential differ-
ence between the orthorhombic and monoclinie systems in the determination of indices
from the gnomonic projection. The intercepts of perpendiculars from the poles of the
faces upon the front to back and left to right zonal lines running through the pole of ¢(001)
give direciily the first two numbers of the indices. The gnomonic projection of the epi-
dote crystal already given (Fig. 348) will serve to illustrate this problem.

VI. TRICLINIC SYSTEM "

(Anorthic System)

216. Crystallographic Axes. — The triclinic system includes all the forms
which are referred to three unequal axes with all their intersections oblique.
When orientated in the customary manner one axis has a vertical posi-
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tion and is called the ¢ axis (cf. Fig. 357), a second axis lies in the front-to-
"back plane, sloping down toward the observer, and is
called the a axis. The remaining axis is designated as
the b axis. Usually the ¢ and b axes are so chosen that
the a axis is the shorter and, like in the orthorhombie
system, is sometimes called the brachy-axis. In that
case the b axis 1s longer and is known as the macro-
axis. But this is not invariably true; thus with rho-
donite the ratio of a:b=1073 :1. The angle
between the axes b and ¢ is called «, that between a
and c is 8, and that between a and b is v (Fig. 357).

1t is to be noted that there is no necessary relation between the values of
@, B, and v, any one may be greater or less than 90°; this is determined by
the choice of the fundamental forms.

Triclinic Axes

1. NORMAL CLASS (31). AXINITE TYPE

(Holohedral or Pinacoidal Class) .

216. Symmetry. — The normal class of the triclinic system is character-
ized by a center of symmetry, the point of intersection of the three axes,
but there is no plane and no axis of symmetry. This symmetry is shown in
the accompanying stereographic projection (Fig. 358).
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217. Forms. — Each form of the class includes two faces, parallel to
one another and symmetrical with reference to the center of symmetry.
This is true as well of the form with the general symbol (hkl) as of one of the
special forms, as, for example, the a-pinacoid (100). _

Hence, as shown in the following table, the four prismatic faces 110, 110,
110, 170 include two forms, namely, 110, 110, and 110, 110. The sameis
true of the domes. Further, any eight corresponding pyramidal faces, as,
for example, 111, 111, 111, 171, 11T, 11T, T11, 111 belong to four distinct
forms, namely, 111, 111; 111, 1T1; 111,-117; 111, 711, and similarly in
general.
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The various types of forms are given in the following table:

Indices
Macropinacoid or a-pinacoid....................... (100)
Brachypinacoid or b-pinacoid....................... (010)
Base orc-pinacoid......... ... ool (001)
PriSIS. . . . ot e { éhh]]:gg
MaAacrodomes. . .. oot ie e e { Ezgg
Brachydomes. ..........c.ciiiiiiiiiiiiian., [ ggﬁg

J(hkl)
Pyramids.............coc i i (kD)

l(kkl)

In the above table it is assumed that the axial ratio is such that e < b. If the oppo-
site were true the names brachy- and macro- would be interchanged.

218. The explanations given under the two preceding systems make it
unnecessary to discuss in detail the various forms individually, except as
illustrated in the case of crystals belonging to certain typical triclinic species.

It may be mentioned, however, that Fig. 359 shows the diametral prism,
which is bounded by three sets of unlike faces, the pinacoids a, b, and c.
This is the analogue of the cube of the isometric system, but here the like
faces, edges, and solid angles include only a given face, edge, and angle, and
that opposite to it.

219. Illustrations. — A typical triclinic crystal is shown in_Fig. 360 of
axinite. Here a(100) is the macropinacoid; m(110) and M (110) the two
unit prisms; $(201) a macrodome, and a:(lll) and r(111) two unit pyramids.
The axial ratio is as follows:

a:b:c=049:1:048, a = 82° 54’, 8 = 91° 52/, vy = 131° 32",

Figs. 361, 362 show two crystals of rhodonite, a species which is allied to

pyroxene, and which approximates to it in angle and habit. Here the faces

360 361 862

Axinite Rhodonite

are: Pinacoids «(100), b(010), ¢(001); prisms m(110), M(@110); pyramids
q(221), k(221), n(221), r(111).

Further illustrations are given by Fig. 363 of albite and Fig. 364 of anor-
thite. The symbols of the faces, besides the pinacoids and the unit prisms,
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are as follows: Fig. 363, z(101); Fig. 364, prisms f(130), z(1§0); domes
1(207), »(201), e(021), r(061), n(021); pyramids m(111), «(111), o(111),

363 366

Anorthite Axinite

Stereographic Projection of an Axinite Crystal

p(Z11). In Fig. 364 of anorthite the similarity of the erystal to one of ortho-
clase is evident on slight examination (cf. Figs. 340, 341), and careful study
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with the measurement of angles shows that the correspondence is very close.
Hence in this case the choice of the fundamental planes is readily made.
Fig. 365 represents a crystal of axinite; Figs. 366 and 367 its stereo-
graphic and gnomonic projections.
367
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Gnomonic Projection of an Axinite Crystal

2. ASYMMETRIC CLASS (32). CALCIUM THIOSULPHATE TYPE

(Hemihedral Class)

220. Besides the normal class of the triclinic system there is another
possible class, possessing symmetry neither 268
with respect to a plane, axis nor center; in it ¥
a given form has one face only. This classfinds ¥
examples among a number of artificial salts. prd .
One of these is calcium thiosulphate / : \
(CaS:0;.6H;0); as yet no mineral-species is  / A
known to be included here. This is the most !
general of all the thirty-two types of forms ! i .
classified according to their symmetry and " o
comes first, therefore, if the classes arearranged . \-\ : /
in order accord.lng to the degree of symmetry -/
characterizing them. This class is one of those e - /:’
whose crystals may show circular polarization. A vl
This is true of eleven of the classes which have Symmetry of Asymmetnc Class

been described in the preceding pages.

.
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MATHEMATICAL RELATIONS OF THE TRICLINIC SYSTEM

221. Choice of Axes. — It is obvious, from what has been said as to the symmetry of
this system, that any three faces of a triclinic crystal may be chosen as the pinacoids, or
the faces which fix the position of the axial planes and the directions of the axes; moreover,
there is a like liberty in the choice of the unit prisms, domes or pyramids which further fix
the lengths of the axes. ‘

When the crystal in hand is allied in form or composition to other species, whether of
the same or different systems, this fact simplifies the problem and makes the choice of the
fundamental forms easy. This is well illustrated, as already noted, by the triclinic feldspars
(e.g., albite and anorthite, Figs. 363, 364) which are near in angle to the allied monoclinic
species orthoclase. Rhodonite (Figs. 361, 362), the triclinic member of the pyroxene
group, is another good example.

In other cases, where no such relationship exists, and where varied habit makes different
orientations plausible, there is but little to guide the choice. This is illustrated in the case
of axinite (Fig. 360), where at least ten distinct positions have been assumed by different
authors.

222. Axial and Angular Elements. — The axial elements of a triclinic erystal are:
(1) the axial ratio, which expresses the lengths of the axes a and ¢ in terms of the third
axis, b; and (2) the angles between the axes a, 3, v (Fig. 357). There are here five quanti-
ties to be determined which obviously require the measurement of five independent angles
between the faces.

The angular elemenis are usually taken as the angles between the pinacoids and, in
addition, those between each pinacoid and the unit face lying in the zone of the other pina-

coids; that is,
ab, 100 A 010,- ac, 100 A 001, be, 010 A 001;

also am 100 A 110, 001 A 101, 001 A 011;
or, instead, any one or all of these,
aM, 100 A 170, 001 A 101, 001 A 0T1.

Of these six angles taken, one is determined when the others are known.

223. The mathematical relations existing between the axial angles and axial ratio, on the
one hand, and the angles between the faces on the other, admit of being drawn out with
great completeness, but they are necessarily complex and in general have little practical
value. In fact, most of the problems likely to arise can be solved by means of the triangles
of the spherica.i projection, together with the cotangent formula connecting four planes in
the same zone (Art. 49, p. 49); this will often be laborious and may require some ingenuity,
but in general involves no serious difficulty. In connection with the use of the cotangent
formula, it is to be noted that in certain commonly occurring cases its form is much simpli-
fied; some of these have already been explained under the monoclinic system (Art. 2&).
The formulas given there are of course equally applicable here.

224. The first ?roblem may be to find the axial elements from measured angles. Since
these elements include five unknown quantities, viz., the three axial angles «, 8, v and
the lengths of the axes a and ¢ in terms of b, five measured angles are required, as already
stated.

Fig. 369 represents the crystallographic axes of the triclinic mineral rhodonite. The
positive ends of the three axes are joined by lines forming three triangles the angles of
which are very important. In the triangle, for instance, which has the b and ¢ axes for

two of its sides since the length

369 370 of the b axis is taken as 1°0, it

18 only necessary to know
the angle « and either p or »
in order to determine the length
of the ¢ axis. In the trian%le
that has the a and b axes for
two of its sides it is necessary
to know the value of 4 and
either ¢ or 7 in order to deter-
mine the length of the @ axis.
And lastly 1n the triangle
formed between the a and ¢
axes, if the length of either of
. these axes is known, the length
of the other can be determined from the angle 8 and either u or ». It is assumed that a
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crystal of rhodonite showing the forms a(100); b(010), ¢(001) and p(111), see Fig.
370, has been measured and the poles of the faces plotted in the stereographic projection,

Fig. 371. The angles between the
great circles which connect these
poles are the same as those shown
in the triangles built upon the
crystallographic axes, Fig. 369. With
the angles between the different crys-
tal faces known by measurement, it
is easy, by the formulas of spherical
trigonometry, to calculate the value
of these other angles and from them
obtain the axial ratio.

That the angles shown on the stere-
o(%'raphic projection, Fig. 371, are
identical with those in Fig. 369 may
be proved as follows. Let Fig. 372
represent a vertical section cut
through the spherical projection of
rhodonite in such a way as to
include the b and ¢ ecrystallographic
axes. The triangle, which has these
axes as two sides and the three
angles «, = and p, lies therefore in
the plane of the figure. The nor-
mals to faces paralle]l to the

¢ axis, i.e. the prism zone, would lie in a plane at right angles to that axis. This plane
372

would intersect the sphere of the spher-
ical projection in a great circle which is
represented on the stereogra(;)hic pro-
jection, Fig. 371, by the divided circle.
On Fig. 372 this great eircle would
-appear 1n orthographic projection as the
line C-C’ lying at right angles to the ¢
axis. In tr: same way all faces lying
parallel to the b axis, i.e. the zone (100)-
(101)—(001), would have their normals
in a plane which would be foreshortened
to the line B-B’ in Fig. 372. Bince

B

This plane would appear in orthographic projection as the line P-P".

the lines C-C’ and B-B’ are at right
angles respectively to the ¢ and b axes
the angle between them must equal the
axial angle, . This same angle will
appear therefore on the stereographie
projection, Fig. 371, between the great
circles of the two zones, the faces of
which are parallel respectively to the ¢
and b axes. Further the normals to all
faces which intersect the b and ¢ axes at
their unit lengths would lie in a plane at
right angles to the line b—¢, Fig. 372.

projection, Fig. 371, this would be represented
as the zonal circle passing through (100), (111),
(011), (100). The angle between
will by construction equal = and that between C-C’
and P-P’ will equal .
therefore in the stereographic
corresponding zone circles.
identity of the angles v, o, 7, 8, x and » in Figs. 369
and 371 can be proved. :

With the necessary number of these angles given
the formulas required for the calculation o
axial lengths are given below. The angles 7’, o', #’,
#'y »’ and o are the corresponding angles to r, o, etc..
in the adjacent quadrants, see Fig. 373.

On the stereographic
373
—B’ and P-P’ o
These same angles will appear / @
1pro;ection between the
n the same way the
the (]
a'V

-c
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c sinm_sinn’ _¢

sint _sinrs’ _a siny _siny' _ _ c
gine sine’ b'sing sinp’ a'sinp sinp’ b’

If the angles given are between the three pinacoids and the pyramid hkl (not the unit form)
the relations are similar. That is, if for the face hkl the corresponding angles be represented
by 7o, oy, ete., where 7o, o are the angles between the zone circles 100, 001 and 100, 010
;‘espectlvely and the zone circle 001, hk0Q, these relations may be expressed in the general
orm

sinty _sint’ _a _k a

m_sinao’_ﬁb*lL b’
k

sin v _sin »' _ ¢ _ c

sﬁiﬁ;_sinm'_l_-l_'(—zﬂ
Ea

sinmg _sinm’ ¢ Kk ¢

sinpy sinp’ [" 1'b
k

Thus for the face 321 the formulas become
sinto_a _2a sinw 3¢ sinm _2¢
sino, 3b 3b sinme a sinp b
1t is also to be noted that
a=180° = 4, g = 180° —- B, v = 180° — C,
where A, B, C are the angles in the pinacoidal spherical triangle 100°010:001 at these
poles respectively, That Is,
A =m+4p=m+p = (180° — a);
B =1'+IJ~=1’0+I-¢0=(‘180°—3)5
C =740 =14 a = (180° — 7).

180° —A =74+ p' =7 4+ p' = a.

Hence, having given, by measurement or calculation, the angles between the faces
ab(100 A 010), ac(100 A 001) and bc(010 A 001), which are the sides of this triangle, the
angles A, B, C are calculated and their slipplements are the axial angles , 8, v respectively.

Still another series of equations are those below, which give the relations of the angles
i, v, p, etc., to the axes and axial angles. By means of them, with the sine formulas given
ai')ove, the angular elements (and other angles) can be calculated from the axial elements.

Also

. asing csin 8
tany =————— ; tany = ————— |
s ¢+ acos B’ : a 4 ¢ cos 8
tan bsinae | tan ¢ sin &
= = .
b= ¥ beosa’ b 4 ¢ cos o
a sin v b sin v
tanr = —————; tanog = ————,
b4+ acosy’ a+bcosy.

These equations apply when u + », ete., is less than 90°; if their sum is greater than
90° the sign in the denominator is negative.

207. e following equations are also often useful. .
2 sin pgin o’ _ 2 sin « sin 7’

tan @ = — = — .
sin (p — p”) sin (=7 — #’)
2 sin usin ¢’ 2 sin » sin »’
tan 8 = = L ,” = — ~ .
sin (u — u’) sin (v — »')
2gin 7 sin v/ _ 2 sin ¢ sin ¢’
tan v = =

sin (r —7)  sin (¢ — o)~

atxtp=F+up+r=v+7+0 =180

. Fhie calculation, from the angular elements or from the assumed fundamental measured
angles, either (1) qf the angular position of any face whose symbol is given, or (2) of the

Also,
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symbol of an unknown face for which measured angles are at hand, requires no further
explanation. The cotangent formula is all that is needed in a single zone, and the solution
of spherical triangles on the projection (with the use of the sine formulas) will suffice in
addition in all ordinary cases.

226. To determine, by plotting, the axial elements of a triclinic crystal, having given
the stereographic projection of its forms. In order to solve this problem it is necessary
to have given the position of the poles of 3
the unit forms (100), (010), (001), (111) or 74
to be able to locate them by means of
their zonal relations. Through these poles
the various zonal circles are drawn  as
shown in the case of rhod onite, Fig. 371.
The angles e, 8, v, #, #, etc., are then given
upon the projection. These angles can be
measured as described in Art. 41, p. 39.
Taking next a certain line as representing
the unit length of the b axis and knowing
the angles a, = and p the triangle that
includes the b and ¢ axes, see Fig. 369, can
be drawn to scale and the unit length of
the ¢ axis determined. In a similar way
the length of the a axis can be found.

226. To determine, by plotting, the indices
of a face upon a triclinic crystal, having
given the position of its pole in the stereo-
graphic projection and the axial elements a(100)
of the mineral. To illustrate this problem
a possible pyramid face on rhodonite will be used. Its pole is located in the stereograp-
hic projection at z, Fig. 374. The position of the poles of the faces a(100) and b(010)
must a{so be known. The directions of the mtersections of the planes of the a—c and

b-c axes with the plane of the

Horizontal Projection [ O

376 rojection can then be drawn.
hese linés will represent the
1.03 A Intercept upon 6 horizontal projections of the a

and b crystallographic axes.
A radial line is then gra.wn from
the center of the projection, O,
through z. Another line,
A-P-B, is drawn perpendicular
to this line at any convenient
distance from the center, O.
The line A-P-B will represent
the direction of intersection of
the face z with the horizontal
plane of the projection. The
intercept that the face will
make upon the vertical axis can
be found by the construction of
a right triangle with O-P ag its
base, a line representing the ¢
axis as its vertical side and the
m : s 2ngle between Oz as the angle
Intercept Intereegs  DEtWeen the base and the hy-
upon @ apon 3 pothenuse, see Fig. 375. Under
the assumed conditions the face
will intersect the ¢ axis at a dis-
tance of 1'93, the radius of the
cllr(c):le T }in fthe figure being
Lo ‘0. e face will also
through the points A and B on the horizontal projections of the a and & a};ﬁ;ﬂ
With the known angles 8 and « it is possible to construct the a and b axes with their proper
angular relations to the ¢ axis. The intercepta of the face upon these two axes will be
given by the extension of the lines from the point 1'93 on the ¢ axis to the points A and B.
In this way the intercepts of the face upon the three axes were obtained as 1'1la, 1'55b,
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1'93¢c. By dividing these numbers by 1°55 we get the intercepts expressed in terms of the
length of the b axis, considering that as 1'0. The intercepts then become 0°71a, 15, 1-24c.
When these are compared with the axial ratio of rhodonite, a :b :c = 1'114 : 1 : 0°986,
the parameters of the face are found to be %a, 1b, 2c. The indices of z are therefore 321,

227. To determine, by plotting, the axial elements of a triclinic crystal having given the
gnomonic projection of its forms. To illustrate this problem it is assumed that the posi-
tions of the poles of the faces, (100), (010), (001), (101), (011) and (111) on rhodonite are
known, see Fig. 376. If this figure is compared with the stereographic projection of the
same forms given in Fig. 371, it will be seen that the angle between the zones (100)-(101)~
(001) and (100)-(111)-(011) is equal to =, that between the zones (100)—(111)~(011) and
(100)-(110)-(010) is equal to p, between (010)-(011)-(001) and (010)—(111)~(101) is equal
to » and between (010)-(111)-(101) and (010)~(110)-(100) is equal to x. The method
by which the angles between these various zones may be measured was explained in Art.
42, p. 43, and is illustrated by the construction of Fig. 376. From these angles triangles
can be readily constructed to give the lengths of the a and ¢ axes in terms of the b axis,
with its length taken as equal to 1-0.

376
T

100

. To determine, by piothing, the indices of the forms of a triclinic crystal, having
giv:ﬁm the position of othez poles upon the gnomonic projection. The method for the solu-
tion of this problem is similar to that already described under the previous systems. The
difference lies in the fact that the lines of reference upon which are plotted the intercepts
of the lines drawn to them from the poles of the faces make oblique angles with each other.
These reference lines are taken as the zonal lines (001)-(101) and (001)-(011) and the
intercepta from which the indices are determined are measured from the pole of (001). 4
study of the gnomonic projection of axinite, Fig. 367, will illustrate this problem.

MEASUREMENT OF THE ANGLES OF CRYSTALS

229. Contact-Goniometers. — The interfacial angles of crystals are
measured by means of instruments which are called goniometers.





