Crushing Tests by Pressure and Impact

BY FRED C. BOND,* MEMBER A.I.M.E.

COMPRESSION TESTS

THE standard method of determining the crushing resistance of rocks consists of crushing prepared shapes under slow compression, and expressing the ultimate crushing resistance at the load causing failure in pounds per square inch of crosssectional area perpendicular to the crushing force, with the height approximately equal to the diameter. One-inch cubes or cylindrical drill cores are commonly used.

Cubes and drill cores are cut by a highspeed steel disk with diamond dust embedded in the edges, and running under a water spray. Such a saw will cut one square inch or more of hard stone per minute.

An oiled, spherical, swivel compression block of small diameter should be used to equalize the pressure. Each sample is crushed between sheets of cardboard or blotting paper extending about one-half inch beyond the edges of the stone. A cloth is wrapped around it to prevent dangerous explosive shattering. It is probably preferable to place the swivel block below the specimen, with either a rigid head or another swivel block above. Whatever the arrangement, the conditions should be selected that will develop the maximum crushing strength of the specimen, even though its top and bottom planes may not be precisely parallel.

The cardboard pads may be dispensed with if the ends of the specimens are

* Director, Basic Industries Laboratory. Allis-Chalmers Manufacturing Co., Milwaukee, Wisconsin. polished smooth. The use of lead pads was discontinued because of the observed tendency to split the material.

The samples are weighed and measured before breaking, and the density is calculated.

Cubes that contain bedding planes or veinlets are usually placed with these vertical and parallel to the crushing force, in order to develop the maximum resistance possible.

A number of compression tests were made on Canadian ores, by Forrest Nagler, of the Allis-Chalmers Manufacturing Co., and are listed alphabetically in Table r. These tests were made on oneinch cubes or on diamond-drill cores approximately one inch in diameter and one inch long. The drill cores represent virgin rock, while the cubes may have been previously weakened by explosives.

Compression tests have been made in the Allis-Chalmers Milwaukee Laboratory on a number of ores and other materials. These are listed alphabetically in Table 2.

In test No. 1339, on limestone from the Hanna Coal Co., comparison was made between 2 by 2-in. diamond-drill core segments and one-inch cubes cut from the cores in the same strata. Results for the cylinders are tabulated directly below those for the cubes. The bedding planes were normal to the compressive force in breaking the cylinders and parallel in breaking the cubes, which accounts for the lower strength obtained from the cylinders.

The percentage of net linear compression at the ultimate pressure was measured in test No. 1055 for Fontana TVA quartzite as 0.30 for cube A, and 0.37 for cube D.

Manuscript received at the office of the Institute Dec. 1, 1944; revised Nov. 15, 1945. Issued as T.P. 1895 in MINING TECHNOLOGY, January 1946. Listed for New York Meeting, February

Listed for New York Meeting, February 1945, which was canceled. Director, Basic Industries Laboratory.

In test No. 1082, for Clifton Magnetite, it was measured as 0.40 for cube Λ , 0.50 for cube C, and 0.36 for cube D. stress of any rock in this tabulation is a chert from Joplin, Mo., at 86,300 lb. per square inch.

Mine and District	Mineral Specific		Shape	Compressive Strength, Thousands Lb. per Sq. In.		
		Gravity		Spec. A	Spec. B	Spec. C
Aldermac Copper, Noranda Arntfield Gold, Noranda Beattie Gold, Quebec	Pyrite Light green No. 1 No. 2	2.86 2.68 2.78	Cube Cube Cyl. Cyl.	22.4 13.8 16.7 40.5	20.2 14.9 31.6	
Cariboo Gold, B. C	No. 3	2.73 2.94	Cyl. Cyl.	24.2 26.8	29.6 14.3	
Cons. M. and S., East B. C	No. 1	2.99	Cube Cyl.	33.0 20.3 60.1	65.0	45.7
East Malartic, Malartic	Diorite Feldspar porphyry	2.65 2.91 2.65	Cube Cube Cube	41.5 10.2 34.2	44.I 28.2	
Gold Eagle, Red Lake Gurney Gold, N. Manitoba	Graywacke Grcenstone Granodiorite Siliceous tuff Siliceous tuff Siliceous tuff Greenstone	2.67 3.06 2.68 3.02 2.87 2.64 2.92	Cube Cube Cyi. Cube Cube Cube Cube	23.5 38.6 2.5 20.4 46.7 35.1 38.8 32.3	20.9 5.1 20.3	32.9 6.7 19.3
Howey Gold, Red Lake	Chert Quartz ore Wall rock Dike III Vein	2.65 2.98 2.71 2.68 2.63	Cube Cube Cyl. Cyl. Cyl.	37.2 25.3 26.9 25.6 18.8	23.5 30.0 14.6	21.4 19.2 11.7
Inco, Creighton, Sudbury	Waste Norite I Norite II Gabbro I Gabbro I	2.74 2.65 2.86 3.00	Cyl. Cyl. Cyl. Cyl. Cyl.	10.0 32.0 23.7 30.5	17.8 29.2 20.1 36.4 27.6	16.9
Inco. Frood, Sudbury	Granite Rhyolite Gabbro I Gabbro II Quartzite I	2.69 2.69 3.03 3.09 2.71	Cyl. Cyl. Cyl. Cyl. Cyl.	28.5 44.5 18.2 38.1 24.1	32.6 18.9 33.6 20.9	
Inco. Levack, Sudbury	Norite Granite	2.77 2.77 2.47	Cyl. Cyl. Cyl.	30.4 23.7 37.3	27.8 23.4 37.4	
Kelowna Ex., B. C Lebel Oro, Kirkland La e	Dark wall	2.89 2.77	Cube Cyl.	36.0	38.0	-0
Little Long Lac, Long Lac	Wall rock I Wall rock II Wall rock III Ore IV	2,03 2,71 2,72 2,71 2,71	Cyl. Cyl. Cyl. Cyl. Cyl.	48.3 12.5 19.0 10.2	51.2 12.4 19.5 16.0	30.1
Macassa, Kirkland Lake	Wall rock V Porphyry	2.77	Cyl. Cube Cyl.	12.3 24.8 61.3	9.0 29.7	14.9
	Black lamp		Cyl. Cyl.	32.6 52.3	30.6 30.0	20.7
McQuaig, Red Lake Ontario Rock, Ontario	Syenite porphyry Lamp porphyry Ore Trap Soft cast iron	2.62 2.77 2.96 3.01 7.00	Cube Cube Cyl. Cube Cube	29.5 24.2 7.4 27.6 74.8	21.6 8.6	9.5
Osoyoos Ltd., B. C	Soft cast iron	7.00 4.51 3.99	Cube Cube Cube	70.9 24.9 37.7		

TABLE	1Com	pression	Tests	on	Canadian	Ores

The compressive strengths and other physical properties of many typical American rocks have been tabulated and published.¹ The highest ultimate compressive

¹ References are at the end of the paper.

It is evident from these data that determinations of compressive strength, while valuable, do not furnish an entirely satisfactory criterion for crusher installations. The variations between duplicate

Test	Nome and Leasting	Mutarial	Specific	Compressive Strength. Thousands Lb. per Sq. In.			
No.	NAME and LOCATION	Materiai	Gravity	Spec. A	Spec. B	Spec. C	Spec. D
1406 1552	Arizona Sand and Rock Co., Phoenix, Ariz. A. S. & R. Co., Tacoma, Wash.	Gravel Limestone	2.6 2.74	34.2 20.8 22.6	27.3 14.7 10.0	24.0 17.2 12.4	30.4 14.9 19.3
1171	Big Rock Stone, Arkansas	Blue granite Gray granite	2.58	18.8 24.2 15.1	10.1 24.2 12.3	20.6 12.3	17.2 10.7
1578	Calif. Rock and Gravel, California	Trap rock	2.03	15.8	18.8	19.4	20.1
1407	Champion Spark Plug Co., Detroit, Mich.	Andalusite	3.08	10.2	19.0	7.8	}
755 1205 1506	Champion Spark Plug Co., Nevada Climax Molybdenum Co., Climax, Colo. Climax Molybdenum Co., Climax, Colo.	Dumortierite Dumortierite Molybdenum ore Molybdenum ore	3.21 3.21 2.64 2.62	51.0 26.1 16.5 17.9 18.2	38.2 32.5 15.0 29.1 17.7	30.9 19.1 26.7 18.7	15.7 17.8 17.6
1396	Correale Construction Co., Minersville, Pa.	Granite and shale	2.66	21.7 7.8	14.4 6.4	9.0	8.2
1285 1220 1191 1055 1571	Construction Service, Massachusetts Dann and Wendt, Wisconsin Emsco Refractories, Salt Lake City, Utah Fontana TVA, Tennessee Globe Iron Co., Iron Mt., Mich.	Limestone Dolomite Quartz Quartzite Specular hematite	2.31 2.63 2.65 2.90	7.9 32.8 4.0 23.6 21.0 35.1	9.1 29.3 8.2 36.4 31.7 36.0	8.3 38.0 4.4 31.6 19.3 25.0	33.1 5.0 10.4 38.6
1487	Great Western Sugar Co., Horse Creek,	Limestone	2.6	30.0	25.9	27.4	
1271	Hanna Coal Co., Ohio	Limestone Limestone massive	2.56 2.68	16.5 39.2	20.7 27.5	15.9 34.9	15.5
1339	Hanna Coal Co., Onio	Limestone I-in. cube 2-in. cyl. I-in. cube 2-in. cyl.	2.51 2.51 2.60 2.60	12.2 16.8 17.3 15.5	7.5 6.7 22.1 15.2	11.0 6.9 20.2 13.3	25.9 22.8
1397	Hanna Orc Co., DeGrasse, N. I. Hanna Orc Co., DeGrasse, N. Y.	Magnetite	3.97 4.10	19.7	22.9	20.6	29.7
1469	Helena Sand and Gravel Co., Helena,	Trap rock	4.35 2.81	20.8	16.6	19.4	
1312 1318	McFeely Brick, Pennsylvania Missouri Portland Cement, Batesville, Ark.	Ganister Limestone	2.55 2.66	32.9 21.5 22.1	34.2 17.2 16.3	36.6 16.7 24.5	23.5 22.4
1345 1324	Missouri Portland Cement, St. Louis, Mo. Missouri Lime Co., St. Genevieve, Mo.	Limestone Limestone	2.63 2.65	17.9 15.6 15.4	17.5 17.2 13.8	18.1	13.5 11.2
1145 1515	Mullite Refractories, Connecticut Oliver Iron Mining Co., Tower, Minn.	Kyanite Jasper	3.71	51.0	55.8 32.1	56.6 42.3	46.1 42.2
		Hematite Level 12 Store 667 Level 15 Alaska stope Level 17, Stope 734 Level 19, Stope 734	4.85	26.5 50.2 33.5 42.8 33.1 29.3	36.2 26.2 33.7 31.4 41.6 21.3	46.7 41.8 30.4 17.5	39.7 43.0 24.4
1402	Petoskey Portland Coment Co., Petoskey,	Level 21, Stope 051 Limestone, fine	2.58	30.2 37.8 15.5	48.9 50.7 13.4	45.0	30.2
1456	Reserve Mining Co., Babbitt, Minn.	Limestone, coarse Taconite	2.64 3.16	16.9 34.0	13.3 40.4	17.9 42.7	19.1 41.1
1039 1298	Soudan Mine, Minuesota Southwest Stone, Oklahoma	Iron ore Limestone	5.13 2.62	48.0 57.2 13.7	58.8	66.0	78.8
1227 1147 1611	Iexas Spokane Idaho, Idaho Steep Rock, Ontario Superior Stone Co., Red Hill, Va.	Trap rock 2 Lead ore Hematite Granite	2.90 4.05 3.89 2.82	25.0 22.8 41.1 13.6	34.0 12.5	20.5 22.1 16.2	32.4
1138	Trap Rock Corp., Minnesota	Trap rock Granite	2.98 2.85	15.5 34.1 25.6	33.5 33.5	32.7	27.3
1159 1347	Tungsten Mctals, Eli, Nev. Western-Brooker, Georgia	Red granite Limestone Granite	2,62 2,64 2,70	41.1 15.3 13.2	39.0 11.4 17.1	24.0	27.0
1 2 9 1	W. G. Swart, Minnesota	Magnetic taconite		52.8	10.7		24.1

TABLE 2.—Compression Tests^a

• All tests on one-inch cubes except No. 1339, for which two tests were made on cylinders.

samples are very large, and the preparation of the cubes is somewhat laborious, so that the number of specimens broken is usually small. While the power consumption and capacity are based upon the average crushing resistance, the crusher construction must be based upon the hardest specimen tested, and since different pieces of rock exhibit such wide differences in crushing resistance, the variety that ultimately breaks the crusher may well escape testing. Moreover, the maximum velocity of the crusher jaws approaches that of an impact, with concentration of stresses at contact points, and with other conditions very dissimilar to those obtaining in a compression test. It has been shown, for instance, that an increase in the velocity of hit causes an important increase in the amount of fine material produced.² For these reasons considerable attention has been devoted to the development of a suitable device for testing impact crushing.

IMPACT TESTS

The development of a method of measuring the crushing resistance of rock under impact has followed a definite pattern in the Allis-Chalmers Laboratory. It was decided about ro years ago to avoid the customary drop-weight methods, on the ground that transmission of a portion of the energy of impact through the sample of the supports is undesirable. As a result, three different types of pendulum devices have been developed.

The first of these was constructed in 1934.³ It consisted of a special head attached to an Amsler impact testing machine, arranged so that in breaking a standard test bar by impact the energy of the falling pendulum was divided between that required to break the standard bar and that required to crush a sample of stone placed under a piston in the pendulum. The sample used consisted of 10 grams of screen-sized particles, which

were screen-analyzed after impacting, and a calculation was made of the net energy required to produce a unit surface area.

FIG. 1.—TWIN-BALL PENDULUM IMPACT DEVICE.

However, in this apparatus some deflection of the bar supporting the piston was unavoidable during impact, and it was replaced early in 1938 by the first twin-ball pendulum impact device (Fig. 1).

In this machine ro grams of screen-sized sample were crushed between two hardened steel pistons struck simultaneously by two steel balls (each 3-in. diameter) released by cutting a cord.

This device was much more convenient and practical than the first, and by its use measurement was made of the impact energy required to produce new surface area, in terms of joules per square meter, for several ores and other materials, some of which are listed in Table 3.

From these results it is calculated

that the laboratory ball mill used in making the standard grindability tests⁴ does 52 joules of useful work in producing new surface per revolution, while the measured 22-in. front bicycle wheels, each reinforced with a steel band encircling the wheel and carrying identical steel hammer bars 2 in. square in cross section, 28 in. long, and

FIG. 2.—PENDULUM IMPACT DEVICE USED IN BASIC INDUSTRIES LABORATORY, ALLIS-CHALMERS MANUFACTURING COMPANY. *a*, at rest; *b*, in operation.

total energy input to the mill is 93 joules per revolution. This is equivalent to a relative grinding efficiency in the mill of 56 per cent.

The impact device used at present is shown in Fig. 2. It consists of two standard weighing approximately 30 lb. The center of each bar is 16 in. below the axles of the wheels, which are mounted in line in a frame, so that when they are at rest the ends of the suspended horizontal hammer bars are separated by the thickness of the specimen to be crushed between them. This free distance between the hammers is adjustable from 0 to 12 in., and is set at 2 in. in the tests to be described. The Brinnell hardness of the hammers is 230. sion is designated as A, the longest dimension perpendicular to A as B, and the longest dimension perpendicular to both A and B as C; the specimen is placed in the holder in such a position that the

Tert No.	Name of Investigator	Location of Test	Material	Surface Energy, Joules per Sq. Meter
695 684 732 570 732 799 504 700 554	P. T. Williams Phelps Dodge Cement Assn. Little Long Lac Cement Assn. Kerr-Addison Springs mines Aluminum Co. Monsanto	Portugal Ajo, Ariz. Chicago Ontario Chicago Ontario East Rand, S. Afr. Alcoa, Tenn. St. Louis	Gold ore Copper ore Portland cement Clinker Q Gold ore Gold ore Gold ore Petroleum coke Pyrite	289 296 300 322 403 462 760 900

TABLE 3.—Impact Energy Required to Produce New Surface Area

The ends of the hammers opposite the striking ends carry hooks. In operation, the two hooks are connected by a cord, which passes up over both wheels and over an adjustable block of wood separating the two wheels, so that both hammers may be raised above the specimen by an equal amount, as indicated by degree graduations on each wheel and pointers on the frame.

When the hammers have both been adjusted to the desired setting, the cord is cut and they fall freely to strike simultaneous blows on opposite sides of the specimen. There is usually very little rebound when the stone is broken, and its vertical component is practically negligible.

Where B is the angle of fall of each pendulum, the total impact energy E in foot-pounds is equal to a constant K times haversine B and the horizontal impact velocity V is equal to a constant K_2 times haversine B. For the hammers now in use K_1 equals 164 and K_2 equals 11.8. At 20 foot-pounds, V equals 4.1 ft. per second.

In the standard method of testing only broken pieces that pass a 3-in. square opening and are retained on a 2-in. square opening are used. Slabby or acicular pieces are discarded. If the longest dimenhammers strike on both sides of dimension C, which is measured in inches with calipers before each blow. Deductions are made for any small projections along C.

In evaluating a material, 10 or more pieces are broken when available. The first piece is tested with a low-energy blow, and the height of fall is gradually increased until the specimen breaks into two or more pieces of approximately equal size. Each succeeding piece is first tested with an energy slightly under that required to break the preceding piece, and the height of fall is increased so that the specimen is broken after two or three blows. The energy increment between successive blows is regularly 4 ft-lb. The maximum energy obtainable with the device is approximately 150 foot-pounds.

The results are expressed as the impact crushing strength per inch of thickness (dimension C), or as foot-pounds per inch. Both the average and the maximum results are reported.

The results of tests on 72 different materials are summarized in Table 4. They are listed in the order of increasing average hardness, or of increasing resistance to impact crushing in foot-pounds per inch.

TABLE 4.—Impact Tests

Test	Name and Location	Material	Specific	Number of Pieces	Ft-lb. per In.	
No.	No.		Gravity	Broken	High	Average
1519	Lawrence Portland Cement Co., Thomas- ton, Maine	Cement clinker	3.15	10	9.88	3.07
1536	Pennsylvania Salt Mfg. Co., Natrona, Pa.	Siderite		10	8.6	3.48
1513	A. C. Bateman, Jonannesburg, S. A. Pennsylvania Salt Mfg. Co., Natrona, Pa	Cryolite	2.0	8 10	7.7	3.55
1516	Saticoy Rock Co., Saticoy, Calif.	Granite pebbles	2.6	7	7.3	4.73
1394	St. Claire Lime, Oklahoma City, Okla.	Limestone	2.6	IO	8.2	5.00
1341	Portage Manly Sand, Portage, Wis. Pennsulvania Salt Mfg Co. Natrone Pa	Silice and fluorspar	2.0	2	0.4	5.22
1370	William Knight, North Carolina	Magnetite	4.77	10	7.6	5.60
1377	Republic Steel, Spaulding, Ala.	Fe2O2, fine	3.30	5	10.8	5.70
1402	Champion Spark Plug Detroit Mich	Fine limestone	2.58	9	12.0	6 18
1324	Mississippi Lime Co., St. Genevieve, Mo.	White limestone	2.6	4	7.8	6.28
1484	Southwest Stone Co., Chico, Tex.	White limestone	2.68	12	10.3	6.31
1377	Republic Steel, Spaulding, Ala.	Fe ₂ O ₁ , coarse	3.29	6	10.8	0.58
1410	Deciede Christy, St. Louis, Mo.	ore Systime	2.09	10	y.0	0.02
1516 1345	John D. Gregg, Roscoe, Calif. Missouri Portland Cement Co., St. Louis, Mo.	Granite pebbles Limestone	2.6 2.6	9 11	11.8 12.1	7.07
1613	DuPont. Terre Haute, Ind.	Pyrite in coal	3.6	12	16.0	7.55
1567	Cedar Bluff Stone Co., Princeton, Ky.	Limestone	2.6	10	11.3	7.97
1510	Loomis Talc Co., Coveneua, N. Y.	Talc	2.83	14	19.3	8.55
1388	Jones and Laughlin, Star Lake, N. Y.	Iron ore	5	11	15.5	9.84
1334	Southern Ferr Chattanooga, Tenn.	Ferrosilicon	6	5	14.8	10.16
1300	Southern Stone Co., Springtown, Okla.	Limestone	2.6	10	18.8	10.47
1533	General Crushed Stone Co., Auburn plant	Limestone	2.6	IO	19.5	10.74
1480	Southwest Stone Co., Knippa, Tex.	Black trap rock	3.12	12	16.0	10.90
1400	Superior Stone Co., Red Hill, Va.	Granite	2.0	10	17.7	11.14
1347	Western and Brooker, Camak, Ga.	Granite	2.6	7	14.8	11.42
1358	Union Steel Castings, Pittsburgh, Pa.	Fe-Mn-C alloy	7.21	2	15.5	11.55
1507	Cedar Bluff Stone Co., Princeton, Ky.	Limestone	2.0	10	15.5	11.00
1507	Cedar Bluff Stone Co., Princeton, Ky.	Limestone	2.6	10	16.0	12.07
1552	A. S. and R. Co., Tacoma, Wash.	Limestone	2.74	10	17.5	12.20
1487	Great Western Sugar Co., Horse Creek, Wyo.	Limestone	2.6	10	20.5	12.00
1367	Batesville White, Arkansas	Limestone	2.6	13	22.2	13.08
1324	Cold Springs, Granite, Minn.	Pink granite	2.6	4	13.6	13.48
1536	Pennsylvania Salt Mfg. Co., Natrona, Pa.	Granite	2.6	10	18.0	13.65
1560	Climax Molybdenum Co., Climax, Colo.	Molybdenum ore	2.62	10	19.4	14.09
1427	Concrete Materials, Sioux Falls, S. D.	Granite	3.42	10 10	18.7	14.51
1469	Helena Sand-Gravel Co., Helena, Mont.	Trap rock	2.81	7	24.0	14.69
1402	Petoskey P.C.C., Petoskey, Mich.	Coarse limestone	2.63	9	27.0	14.75
1398	Correale Const. Co., Minersville, Pa.	Shale	2.0	8 10	22.1 22.1	14.00
1567	Cedar Bluff Stone Co., Princeton, Ky.	Limestone	2.6	10	19.0	15.35
1397	Hanna Ore Co., DeGrasse, N. Y.	Iron ore	4.24	8	23.4	15.64
1372	John T. Dyer (A-C Office), Harrisburg, Pa.	Grav granite	2.0	9 10	30.5	16.08
1502	W. S. Barry	Rhyolite olivine	2.65	10	21.1	16.11
1390	Old Colony Crushed Stone, Quincy, Mass.	Granite	2.61	9	28.7	16.59
1578	Globe Iron Co., Duluth, Minn.	Specular hematite	2.0	10	20.8	10.74
1318	Missouri Portland, Batesville, Ark.	Limestone	2.6	13	33.2	17.91
1318	Missouri Portland, St. Louis, Mo.	Limestone	2,6	13	23.8	18.00
1505	Reserve Mining, Babbitt Minn.	Taconita	3.70	10	27.5	19.15
1502	Lynn Sand and Stone, Co., Boston, Mass.	Gabbro diorite	2.85	10	29.8	20.07
1363	Great Notch Granule Co., Granule, N. J.	Trap rock		8	28.9	20.72
1412	Minn.	Red granite	2.0	4	27.1	21.85
1412	L G Everist Co. Del Rapids S Date	Everist granite	2.0	3	27.1	21.90
1358	Union Steel Casting, Pittsburgh, Pa.	Fe-Mn alloy	6.84	2	34.1	25.20
1515	Oliver Iron Mining Co., Tower, Minn.	Hematite	4.85	15	34.0	25.29
1358	Oliver Iron Mining Co., Pittsburgh, Pa.	Hematite	0.03	I	40 8	29.00
1412	Spencer Quarries Co., South Dakota	Red granite	2.6	2	33.9	32.00
1407	Champion Spark Plug, Detroit, Mich.	Dumortierite	3.21	10	60.2	38.10
1493	N. Y.	Chiome metai	7.30	4	73.8	55.45

DISCUSSION

	Material			Compression	Impact, Ft-lbs.		
Test No.		State	Cuber	Lb. per Sq. In.			
			Broken	Maximum	Average	Maximum	Average
1402	Limestone (fine)	Mich.	A	15.450	14.220	12.0	6.00
1407	Andalusite	Mich.		11.800	10.207	8.0	6.18
1324	Limestone (white)	Mo.	2	10.830	10.285	7.8	6,28
1345	Limestone	Mo.	4	18,120	16.100	12.1	7.18
1406	Gravel	Ariz.	10	36,300	28,835	17.7	11.14
1611	Granite	Va.	5	17,200	15,020	13.4	11,20
1347	Granite	Ga.	, õ	27,600	17,923	14.8	11.42
1552	Limestone	Wash.	24	22,000	16,685	17.5	12,20
1487	Limestone	Wyo.	4	30,000	27,750	20.5	12.60
1324	Limestone (gray)	Mo.	5	15,960	14,410	19.7	13.16
1500	Molybdenum ore	Colo.	10	29,050	19.970	19.4	14.09
1409	Trap rock	Mont.	3	20,800	18,923	24.0	14.70
1402	Limestone (coarse)	Mich.	4	19,100	10,785	27.0	14.75
1390	Shale	Penn.	7	9,100	8,100	22.I	15.00
1397	Iron ore	N.Y.	6	29,700	24,305	23.4	15.04
1578	I rap rock	Cant.	i õ	20,150	17,900	28.8	10.74
1571	Specular hematite	Micn.	0	38,000	33,070	29.8	17.03
1310	Limestone	Mrk.	4	24,480	20,000	33.2	17.91
13100	Taconita	Minn	0	23,540	19,222	23.0	10.00
1450	Leon oro	Minn.	5	40,000	41,500	30.0	19.00
1407	Dumortierite	Mich	2	51,400	30,550	40.0	23.29
1407	Dunior negate	Milen.	3	51,000	44,233	00.2	30.10

TABLE 5.—Comparison Tests

The mean highest value for all of the tests is 148 per cent of the mean average value.

Both compression and impact tests have been made on 22 different materials. These are tabulated in Table 5, the materials being listed in the order of increasing average impact strength.

Comparison with the observed resistance to crushing these materials in commercial installations indicates that the impact results may be closer to the resistance to crushing than the results of compression tests on inch cubes. This is especially notable in the case of dumortierite (test 1407), which is extremely resistant to crushing but whose compressive strength is not particularly high. However, more data must be collected before the relative merits of the two methods can be accurately evaluated.

ACKNOWLEDGMENTS

Acknowledgment is made to Mr. José A. Ordonez and to Mr. Earl O. Schneider, both of the Allis-Chalmers Manufacturing

Co., for much of the impact test work and calculations.

References

- 1. Physical Properties of Typical American Rocks. Iowa Expt. Station, Ames, Iowa, Thermal Expansion of Typical American Rocks, Iowa Expt. Station, Bull. 128. 2. A. W. Fahrenwald and Associates: Velocity
- of Hit in Rock Crushing. Eng. and Min.
- of Hit in Rock Crusning. Eng. and Sam. Jnl. (Dec. 1937 and Jan. 1938).
 3. F. C. Bond and W. L. Maxson: Grindability and Grinding Characteristics of Ores. Trans. A.I.M.E. (1939) 134, 296.
 4. F. C. Bond and W. L. Maxson: Standard Grindability Tests and Calculations.
- Grindability Tests and Calcu Trans. A.I. M.E. (1943) 153, 362.

DISCUSSION

(O. C. Ralston presiding)

HARLOWE HARDINGE.*-Has the impact method described in the paper been used to compare the resistance to reduction in size of various materials with actual operation results of mills in the field?

Is this impact method a better index of the true resistance to grinding under actual field

President, Hardinge Company, Inc., York, Pennsylvania.

conditions than other methods the author has reported in the TRANSACTIONS?

F. C. BOND (author's reply).—The impact crushing device was designed to measure relative resistance to crushing, or what may be called the crushability, and is not used for comparing the resistance to grinding, or grindability. The correlation between crushability and grindability of different materials is not at all close, since fractures, zones of weakness, and structural features of rock have a much greater effect upon the crushability than upon the grindability. We still depend upon our standard grindability tests for measuring resistance to grinding, and use the impact crushing tests only in relation to crusher installations.

The impact crushing device has several advantages over the measurement of crushing strength in pounds per square inch as an index of crushing resistance.