
Design of Scalloped- Bottom 
Thickener Tanks 

Thickeners are simply large tanks, usually circular in shape, 
which are designed to allow settling of solids and to operate with 
continuous overflow of clear water and underflow of thick pulp. 
T h e  tlimensions of the  thickener a re  usually such that  
dewater~ng of vrry fine pulps may be accomplished while still 
overflowing clear water. Some thirkenrrs such as the Genter, 
Hard in  e ant1 Hydrota tor  types combine thickexling with 
f i l t e r i n s  while uthers such as the Dorr type are pure thick- 
eners. l:2,3 

A schematic ~lia~gram of th r  traction type Dorr thickener is 
shown in Fig 1 .  This type is appropriatr for tanks over 15 m (50 
ft) in diametrr. This tank emplovs a rotating raking mechanism 
which moves the settled material towartt the central discharge. 
For this and other thickeners, i t  is common to have a shallow 
conical tank bottom in ordcr to conform to the geometry of thr  
raking mechanism, and it is often desirable to elevate thr  tank 
f o ~  ease of access to the product. When t h ~  tank does not rest on 
the ground, the forces resisted by the cone are large, and thick 
plates must be  employed.  7 'hc fabr ica t ion of these tanks  
requires temporary supports in order to erect the cone. 4 flat- 
bottomed tank could also be used because the scttled material 
would soon form a hardened conical surfacc.. However, because 
of t he  presence of large bending forces. even larger plate 
thicknesses arr required than for the conical bottom. 

Fig. 1-Traction type Dorr th~ckener 

Significant cost savlngs often (-an he realized hv thr  use of a 
scalloped-bottomed tank such as the one partially shown in 
Fig. 2. The particular scalloped bottom discussed in this paper 
employs radial beams forming the outline of t h r  cone~shaped 
bottom. These beams are supported directly by columns. Conc 
segmrnts  a r e  h u n g  between adjacent  beams.  T h e  exact 
geometry of these segments depends upnn the cone angle and 
radius. the number of radial beams, and their inclination. I 'hr 
geometry is chosen to satisfy certain clearance restraints and to 
utilize the material as efficiently as possible. T h r  resulting 
thickness of these segments is significantly less than that of the 
equivalent plate for the tank with a conical bottom. This result. 
along with the simpler fabrication procedurws required, accounts 
for the cost savings associated with this design. T h e  raking 
mechanism employed may be the same as for the conventional 

conical bottom since the settled material soon forms a conical 
surface. 

De te~mina t ion  of the  internal force mechanism for the 
scalloped bottom leads to designs that utilized material efficicnt- 
ly a n d  thus  maximize the  cost savings. T h e  compl icated 
geometry of these bottoms along with the difficulty in analyzing 
the structure arc  factors which may have limited the use of 
scalloped-bottomed tanks to date. When such tanks have been 
built, the uncertainties associated with the internal forces have 
led to drsigns that are  somewhat inefficient. In this paper ,  
equations relating the  geometric parameters are  presented 
along with simplified closed-form solutions for the internal forces 
in the cone segments, from which the loads applied to the beams 
and the loads carried to the  cylindrical tank shell can be 
deduced. An example is presented to show the magnitude of the 
savings which may be realized with this cu r~f ip ra t ion .  

Scallop Geometry 

In order to predict the stresses and forces that occur in the 
scallop~d-bottomed tank, it is important to have a thorough 
understanding of the geometry of the structure. Figure 3 shows 
some of the  important  geometric parameters for this con-  
figuration. The radius of the cylindrical tank is equal to R .  The 
number of radial beams, N ,  is usually determined by the num- 
ber of supports deemed necessary and the spacing requirements 
for ease of access to the bottom of the tank and case of connec- 
tion at their common central ring. Typically. N might equal 8 
for smaller diametrr tanks and become 12  or 16 with increasing 
diameter. The angle d ,  which lies in the horizontal plane, is 
p e n  by 

The  radial beams are inclined by an angle P with the horizontal. 
The l e n ~ h  of each beam, L ,  is then given by 

A typical cone segment 0 - A - B  is shown in Fig. 3. Point 0 is 
the theoretical intersection of the radial beams: points A and B 
are at the intersection of the radial beams with the cylindrical 
shell: point M lips halfway between A and B on the straight line 
joining the two; point C is the lowest point on thr intersection 
curvc of the conical segment and the circular cylindrical shell. 
The length of line A - B  equals S and is pven by 
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Fig. 2-Scalloped bottom layout. 

The  vertical separation between point C and point A, B or M 
1s equal to v. This distance is important since it is a measure of 
the clearance at the edge of the tank. Thc  value of v depends 
not only on the number of radial beams and their inclination, 
but on the geometry of the particular conical segments placed 
between the brams. 

The slope of the plane O-A-B with the horizontal is equal to 
the  a n  le A .  Since line O - M  has a length equal  to ( ~ 2  - 

(S/2)2)8/2 and the clevation of point A .  B or M above point O is 
rqual to R tan p, using Equations (2)  and (3) yields 

sin A = sin f i  / ( I  - sin2 d cos2 p)% (4) 

The geometry of the conical segment is shown in Fig. 4.  This 
segment is a part of a cone having cone angle a ,  base radius Rc 
and height hc. Since the base of the cone must pass through 
points A and B, the con? radius and height are not arbitrary, 
but depend upon the cone angle through the equations 

Rc = L.sin a :  hc = Lcos a ( 5 )  

The  cone segment between adjacent beams is a truncated 
portion of a wedge of the cone depicted. The wedge portion 
projects an angle 2 + on the circular cone base as shown in the 
section view in Fig. 4. The angle + can be found in trrms of 
previously defined quantities using Equations (2). (3) and (5) 
since 

sin + = S/2Rc = sin d cos p/sin a (6) 

The wedge is truncated at the intersection of the vertical cylind- 
rical tank wall. T h e  plane O-A-B makes an angle O with the axis 
o f t  he cone where 

tan O = Rc cos Q/hc - tan a cos + (7) 

The distance v may now be found by subtracting the elevation 
of point C from the elevation of line A-B. It follows that 

v = R ( t a n p  - tan A)  (8) 
where A = A + O - a .  

In a typical problem. R ,  N and /3 are specified. All that is 
then needed to completely define the scallop geometry is thr 
cone angle a or the cone radius or height since Equations (1)-(8) 
may be solved, in o r d e r ,  for t h e  remaining geometric 
parameters. 

Fig. 3-Parameters of the scalloped-bottomed tank 

Typical intrraction curves for the basic geometric parametrrs 
are shown in Fig. 5 wherein the following parameters are in- 
troduced: 

When Rc is less than S/2, the cone cannot span adjacent radial 
beams and the scallop geometry is impossible. This limiting 
situation is equivalent to specifying a minimum value for D, as 
seen in Fig. 5 where 

Dmin = sin d (10) 

When D = 1 ,  the cone axis is vertical, v = 0 and the bottom of 
the tank is conical. When the line O-C is horizontal. V = tan 0. 
Since it is usually undesirable to have line O-C slope downard 
from point 0, the line V = tan p is shown as limiting th r  rangr 
of permissible geometries. 

The  use of curves similar to those given in Fig. 5 enables th r  
designer, through a short trial and error procedure, to drtcr- 
mine the scallop geometry which satisfirs the various constraints 
placed on a particular problem. 

Internal Scallop Forces 

The  pressure acting along line O - C  is givrn by 

where, as seen in Fig. 3 ,  e is tht- drnsity of th r  contained 
product, x is the horizontal distance to a point along line O - C  
and h is the pressurc head at point 0. 
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A gentral rxpression for th? prrssurt along a n y  grnt,ratlng 
linr of' the conic-al s e p r n t  (genrratrix) involvrs mrasurr of 
thr  distance along that line as wvll ds thr inclination of thr  linr 
from the horirontal In ordrr to simplify the analytic cxprcssion 
for thr  fol-ces in thr scallop, i t  is conservativrly. and cluitr n c - ~  
curatrly, assumed that thr  prrs:.ure at any point on thr  intrr-  
section of the conr and the planr x constant is R1vr.n hy 
Equation ( 1  1 ) .  

For the purpose of finding thr  in t r r r~al  Sorccs in th r  cone 
scsment, i t  is morr convrnient to Txprrss this prcssure i r ~  terms 
of the distancr along the cone axis. z (as shown in Fi,g 4 ) .  Sinc-t, 

the pressurr can be rewritten as 

t~ - ~ ( h  I i 7 )  

where 

K tan A (cos A .  cos 0 )  ( 1  4)  

The forces in the conical scallop segment can be found easily 
since the current problrm is analogous to thr conical-bottomed 
tank shown in Fig. 6 (a )  for which the pressure distribution is 
given by 

p -- e '  ( h '  7 )  ( 1  5 )  

Thrrr forr ,  if 
P '  Z :  K Q  (16) 

anti 
h '  .. h/:K ( 1  7 )  

the  forces in the  conical bottom (z hc) are equal to the  
corresponding forces in the  conical scallop segment.  T h e  
solution for the forces in the cone shown in Fig. 6(a)  is well 
known and may be found in many standard references on shell 
structurrs.4.5 

At any elevation z ,  t he  force in the  direction of a conr  
generator (called lungitudinal or meridian forre) per unit length 
along th r  circumference of the  circule (of radius z tan a )  is 
drnotrd by N + ,  as shown in Fig. 6(b) ,  and is given by 

N +  = Q7 (h  - (2; 3)Kz) tan a / ( 2  cos a )  ( I  81 
This relationship is easily verified by noting that the weight of 
the product is counteracted by the r-component of N+ over thr  
circumfrrence of the circle. The  hoop force (also called ring or 
latitudinal force) prr unit length along a generator is drrloted hy 
N o  and is given by the pressure times the radius of curvaturr in 
the hoop direction which yields 

N g  = QZ (h Iiz) ( tan  a/cos a )  (19 )  

T h e  longitudinal force N +  has a maximum value at z - 
3 h ' ;4. while the maximum value of the hoop force N g  occurs at 
z = h '  , 2 .  Both of these values for z are much larger than hc for 
most problems. This means that both N+ and N g  increase from 
zrro at  the center to maximum values at the intersection of the 
conical segment with the  cylindrical tank wall. T h e  stresses 
anvwhcre in the  conical segment  are  obta ined simply by 
dividing the forces N +  and N o  by the thickness of the cone at 
that point. 

Fig. 5-Plot of scallop geometry parameters 

Fig. 4-Scallop cone geometry 

T O A N < A c T l n N S  VOL. 264 

. 1 ' I  I , , ,  I,,, ,.,/ ' / , . , l ( l  t . - 1  . ,,,; ' ,  ,,!. ,,, < , ? r n , ? I ,  \ . I , , O  h t \ l S  

Fig. 6-Internal scallop forces. 
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The  forces in the conical segment are transmitted to the 
radial beams and to the tank wall. The hoop forces have an un- 
balanced component at the intersection of the conical segments 
with the radial beams as shown in Fig. 6(c). The beams carry 
this force which is equal to 2 N g  sin + per unit length along the 
beam and is perpendicular to the axis of thr  cone. 

At any section z = constant along the conical segment, the 
longitudinal forces N +  may be integrated over the circular 
segment to give net forces perpendicular to and parallel to the 
cone axis. At the tank wall, these forces may be found ap-  
proximately by assuming that the plane z = hc represents the 
intersection of the cone with the tank wall. Thisis a conservative 
estimation of the forces since along the curved line of intersec- 
tion z 3 hc and since h'+ is a monotonically increasing function. 
The force resultants may be resolved into horizontal and vertical 
components as shown in Fig. 6(d). The horizontal component is 
usually resisted by a compression ring. The vertical component 
is transmitted through bending in the ring into the columns 
supporting the tank. Alternatively, the imbalance of the net in- 
ternal forces from one section to the next along the cone may be 
considered to be all or partially resisted along the length of the 
radial beams. This resistance is due to the shearing forces tran- 
smitted from the edges of the conical segment to the radial 
beams. If these forces are properly taken into account, the com- 
pression ring may be sipificantly reduced in size or eliminated 
completely and the shear in the supporting columns may be 
reduced. 

used throughout. The cylindrical tank wall is also 6.35 mm ( 1 / 4  
in . )  thick except for the bottom 0.69 m (27 in.) section which is 
increased to 19.1 mm (3/4 in.) to partially act as a compression 
ring. 

For comparison purposes,  the  same t ank  geometry is 
redesigned with a flat conical bottom. The design calls for a 
cone bottom with plate thicknesses varying from 6.35 mm (1/4 
in.) from the center to one-third the cylinder radius to 10.3 mm 
(13i32 in.) over the middle third to 12.7 mm ( l / 2  in . )  for the 
outer third. Because of the different areas involved, this conical 
bottom is equivalent in weight to a plate of uniform thickness 
equal to 11.2 mm (0.441 in.). The cylindrical tank wall is 6.35 
mm (1/4  in.)  except for a 1.17 m (46 in.) section 34.9 m m  (1- 
3 /8  in.) thick which forms the bottom of the cylinder a r ~ d  a sup- 
porting skirt. Additionally, 0.71 1 m (28 in . )  of 34.9 mrn ( 1 3 / 8  
in . )  thick plate are required to properly complete the com- 
pression ring. T h e  f la t ,  cone-bottomed tank contains a p -  
proximately 15,900 more kg (35,000 Ib) of steel than the 
scalloped-bottomed tank.  Based upon a 1976 price of a p -  
proximately $1.21/kg ($0.55 per I b) of in-place steel, the cost 
differential amounts to 19 thousand dollars. 

Tanks of larger diameter would show even greater savings. 
There are no tank diameter limitations for the use of a scalloped 
bottom except that for a fixed number of radial beams. the 
stability of the individual scallop sections would eventually be a 
problem. However, this difficulty could be eliminated by in- 
creasing the number of radial beams. 
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A 14.0 m (46 ft) diameter tank with 2.4 m (8 ft) high walls con- 
taining a slurry having design specific gravity of 2.25 is used to 
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Geologic Aspects of Recent Exploration 
and Development in the Park City Silver- 
Lead-Zinc District, Utah 
A.  J. b i i c k u ~ n .  Jr .  and H'. J. Carmoe 

Abstract- In mid-J970. Park City Ventures, a Utah partner- 
ship of Asarco and the  Anaconda Company, initiated a six- 
phase exploration and derlelopment program in  the Park City 
District, Utah. Geologic studies had delineated a number of ex- 
ploration targets in seueral areas of the district. Di~ror~ery of ore 
zn any oJ the  target areas and continued favorable downdip 
development below then Productir~e ore bodies would allow for 
reserve expansion and mill construction. T h e  targets were: 
replacement mineralization in  the  Mississippian Humbug for- 
mation below productive ore bodies on the east Junk of the Park 
City anticline; replacement mineralization in the Humbug  for^ 
mation in  a n  unexplored fault block in t he  footwall of  the  
Hawkeye structure on the  east flank of the anticline; uein and 
replacement mineralization along the Siluer Fissure; potentially 

h k h e r  grade replacement rr~ineralization zn the Humbug for- 
mation in a theorized structural block on the u8estflank o f  t h ~  
anticline beneath the Ontario vein; replacement mineralizatiorc 
zn the  Permian Park City formation in the  West End shap area 
of the  Silver King mine; vein mineralization along theBack uein 
in the  Judge mine.  In  1971 the Judge and Silver King Projects 
were suspended, due  to  a 30% cutback in  the  exploration 
budge t .  I n  sp i te  o f  t h e  cut back addi t ional  T C S C T K J P S  were 
deueloped below the Humbug East Flank ore bodies; a major 
zone of ore grade mineralization was discor~ered along the Silr1c.r 
Fissure, fiue new ore bodies were found in  t he  Humbug  and 
Doughnut formations on the westjlank of the anticline beneath 
the Ontario uein. First concentrates were shipped from a new 
mill in May 1975. 
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