44″ x 20″ Laboratory Shaker Table

44″ x 20″ Laboratory Shaker Table

US$5,000

china manufacturerThis 911MPELY1050 laboratory (gold) shaker table has its inner deck made of aluminium alloy, it concentrate/tailing launder manufactured in stainless steel, and its strong shaker table stand if middle steel. This shaker’s deck is 1.1 m long X 50 cm wide. It weighs in at 150 Kg (330 lbs).

Its head motion mechanism emulates Wilfley’s bumping motion. The shaker table’ stroke can be adjust between 9 and 17 mm (3/8″ and 5/8″) at a shaking frequency of 280 to 460 cycles/minutes.

Select between a SAND or SLIMES Deck for your table.

1-year-warranty

First 90% of all people using concentrating tables use the sand deck.

The sand deck is efficient in separating high density from low density material (with a difference of 1 SG unit), in the particle size range ranging from 10 mesh to 150 mesh.

Slimes decks are used for particles in the 150 to 325 mesh range. A common observation made by those using the slime deck; the surface tension of water interferes with recovery in this particle size range. This is probably why 90% of people using the tables use the sand deck, also.

test

Description

laboratory shaker table_dimensions

The laboratory shaking table is widely used for the gravity separation of sands too fine to treat by jigging. The physical principles utilised in tabling must be understood if preparation of feed and application of control are to be efficient.

laboratory_shaker_table_flow_pattern

Effect all Streaming Particles of Lateral Displacement

Consider a number of spheres rolling down a slightly tilted plane under the urging influence of a flowing film of water. Some of the spheres (shaded) in Fig. 170 represent heavy mineral and others (white) light gangue. The largest sphere travels fastest and the smallest one slowest, under the combined influence of streaming action and gravitational pull. Of two spheres having the same density, the larger moves faster. Of two having the same diameter, if the slope is relatively gentle and the hydraulic urge relatively strong, the lighter sphere travels faster. If during the otherwise free downward travel of these spheres the whole plane is moved sideways, then the horizontal displacement of the spheres varies in accordance with the length of time they take to roll down. This is represented here on the right, which shows
that the largest light sphere has undergone the least horizontal displacement because it travelled fastest, whilst the smallest heavy one has been carried furthest to one side. From this it is seen that if a suitable displacing movement can be applied to a plane, the feed can be spread into bands according to the size and density of its constituent particles. If these bands are collected into separate vessels as they leave this deck, the feed will have been segregated into three main products:

  1. Fastest-moving. Coarse light mineral (gangue).
  2. Medium-moving. Fine light mineral plus coarse heavy mineral plus partly unlocked particles (middling).
  3. Slowest-moving. Fine heavy particles (concentrate).

A particle light enough to respond mainly to the hydraulic influence of the flowing film of water moves down-plane with little horizontal displacement. A typical particle, unlike a sphere. will either slide or “skip” downward, rather than roll, provided it is reasonably free to move. Apart from the limited use of the automatic strake in concentrating metallic gold, continuous lateral displacement across the sorting plane cannot handle an adequate tonnage and is not used in the mill.

With the Laboratory shaking table a reciprocating side motion is applied to the sloping surface or “deck” down which the pulp is streaming. If this shaking action was applied symmetrically in both directions across the stream, each particle would move an equal distance in each direction, and separation into bands would not occur. The displacing stroke must be applied gently, so as not to break the grip between particle and deck. The deck accelerates, and in doing so imparts kinetic energy to the material on it. Then the deck motion is abruptly reversed so that it is snatched away from under the particles
resting immediately above it. These continue to skid sideways (across the flow) until their kinetic energy has been exhausted. It is therefore essential
to provide a differential side-shake which builds up gently and then breaks contact between deck and load.

laboratory_shaker_table_working_principle

Progressive Stratification along Riffle

This is provided by the shaking mechanism or head motion of the shaker table. The slower the particle travels downstream, the further it slides sideways under the influence of the shaking motion.
Thus far discussion has been limited to a series of individual particles fed to the deck from one starting-point. If, instead, a layer several particles deep is fed from a starting-line, it becomes possible to handle a greatly increased load on the deck. The operating conditions have now changed. In the cross-section through such a layer, as seen normal to the direction of shake, the mixed feed first stratifies itself under the disturbing influence of the shaking action. The smallest and heaviest particles reach the deck, the largest and lightest stay uppermost, with a mixture of large heavy and small light grains between. This arrangement exposes the large, light particles to the maximum sluicing force of the film of water as it streams down the laboratory table. a force that can be controlled in intensity by varying the volume of water used and the slope of the deck. It is thus possible to exert some degree of skimming action to accelerate the downward movement of the uppermost layer without disturbing those below.
The particles next to the deck are pressed to it by the material above, and therefore can grip it with greater firmness than would be given by their
own unaided weight. They thus are able to cling during fast sideways acceleration, and are only freed and set skidding by the sudden reverse action.shaker table (4)

 

The overlying particles have only a precarious hold. This aids the discriminating action of each stroke. The bottom particle travels furthest, breaks free at stroke reversal and is the first to skid. Those above it sway backward and forward and consequently receive less lateral movement. This accentuates the separating action by giving the bottom (heavy mineral) particles the maximum horizontal displacement per stroke and the upper (light gangue) grains the least. This aids the sorting discrimination. If the feed has been properly prepared by hydraulic classification, ensuring that all the grains have similar settling characteristics through vertical currents, film sizing can now take advantage of the variation in cross-section between the heavy and light particles in each stratum, sweeping down the lighter and leaving the heavier untouched. The particles thus segregated are then removed in separately discharged fractions, called bands, at the far end of the table’s deck.
It would not be possible to form and maintain an evenly distributed thick bed of the kind called for by the foregoing considerations if a smooth
plane deck were used. Riffles are therefore employed to provide protected pockets in which stratification can take place. They are usually straight and
parallel with the direction of shake, but may be curved or slanted. The deck, instead of being plane, may be formed to provide pools in which the feed can stratify. The riffles must:

  • Arrest and spread the entering feed.
  • Aid transmission of shaking action to their enclosed load.
  • Expose the top layer of sand, after it has stratified, to the cross flow of wash water down the shaker table deck.
  • By suitably gentle tapering, promote delivery to succeeding riffles, wash planes or discharge point’s.laboratory shaker tables

Thus (a) rules out as bad practice the use of “stopping” riffles set high above the rest, sometimes used to arrest and spread entering feed. If all riffles are not of similar initial height the stratifying action and transfer between them is upset. Smooth delivery is best achieved with a feed box integral with the moving deck, and aligned with the vibrator. It should let the feed down gently to the head riffles. Items (b), (c), and (d) are arguments against the use of curved riffles, which increase wall friction and upset stratifying action.
A badly maintained mechanical action and deck coupling may mislead the engineer into redesigning his riffle plan, just as an incorrect stance may cause the unwary golfer to modify his swing instead of standing correctly.
In the standard Wilfley table the riffles run parallel with the long axis, and are tapered from a maximum height on the feed side (nearest
the shaking mechanism) till they die out near the opposite side, part of which is left smooth. Where the riffles stand high, a certain amount of eddying movement occurs, aiding the stratification and jigging action in the riffle troughs.

laboratory_shaker_table_riffle

As the load of material is jerked across the Laboratory Shaker Table, the uppermost layer ceases to be protected from the down-coursing film of water, owing to the taper of the riffle. It is therefore swept or rolled over into the next riffle
below. In this way the uppermost layer of sand is repeatedly sluiced with the full force of the current of wash water, riffle after riffle, until it leaves the
deck. This water-film is thinnest and swiftest while climbing over the solid riffle, and the slight check and down pull it receives while passing over the
trough between two riffles helps to drop any suspended solids into that trough.

At the bottom of the riffle-trough, then, the particles in contact with the deck are moving crosswise as the result of the mechanical shaking movement.
At the top they are exposed to the hydraulic pressure of a controllable film of water sweeping downwards. In the trough of the riffle the combined
forces-stratification, eddy action, and jigging-are arranging them according to density and volume.

shaker table (3)

Provided the entering particles have been suitably sorted and liberated, good separation can be achieved on sands in any appropriate size range from an upper limit of about i” to a lower one of some 300 mesh. The difference in density and mass between particles of concentrate and gangue determines the efficient size range which must be maintained by hydraulic classification or free-fall sorting of the feed. A further separating influence is applied hydraulically along each riffle as the water in it gathers energy from the deck’s movement. As it gathers speed in the forward half of its cycle, the water flowing along the trough parallel to the axis of vibration is accelerated. When the deck’s direction is abruptly reversed this flow is only gently checked relatively to the more positive braking force exerted on the skidding particles in the riffle. There is thus a mildly pulsed sluicing action across the Laboratory Shaker Table, in addition to the steady stream at right angles to it, down-slope. This cross-stream helps the particles to travel along the riffles. shaker table (2)Since separation depends to a large degree on the hydraulic displacement of the particle, its shape influences its reaction. Flakes of mica, though
light, work down and cling to the deck, and may be seen moving nearly straight across, even at the unriffled end where they meet the full force of the stream. Where there is no marked influence in density between the constituent minerals of a pulp, the shape factor aids a flat particle to move along the deck to the concentrates zone, and under like conditions helps an equi-dimensional one to move down-slope toward the tailings discharge. Shape factor can therefore help tabling in some cases, and be disadvantageous in others, depending on whether it reinforces or opposes differences in size between the classified particles of value and tailing.

laboratory shaker table

I Need Assistance